Физиология дыхания: Методическое пособие. Читать бесплатно онлайн в электронном виде

В методическом пособии для студентов 2 курса лечебного и педиатрического факультета отражен объем теоретических знаний, необходимых для усвоения в процессе обучения на кафедре нормальной физиологии. Настоящее пособие является результатом работы сотрудников кафедры нормальной физиологии им. П.К.Анохина Волгоградского государственного медицинского университета и представляет собой опыт развернутого и систематического изложения физиологии дыхания с изложением клинических аспектов, которые обязательно нужно учитывать в практике врачей.

Страницы ← предыдущая следующая → 1 2 3 4 5 6 7 8 9 10

           ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ                        УНИВЕРСИТЕТ                      Кафедра нормальной физиологии                          ФИЗИОЛОГИЯ ДЫХАНИЯ  (Методическое пособие для студентов 2 курса лечебного и педиатрического                                 факультета)                               Волгоград , 2005 г.   УДК 612. 2(07)     ФИЗИОЛОГИЯ ДЫХАНИЯ: Методическое пособие. Волгоград, 2005.- 88 с.   Составители:   д.м.н., проф. ВолГМУ С.В.Клаучек к.м.н., доцент ВолГМУ Е.В.Лифанова     Рецензенты: Заведующий кафедрой физиологии и анатомии Астраханского Государственного университета, Заслуженный работник Высшей школы РФ, д. б. н., профессор Д.Л.Тёплый  Зав. кафедрой нормальной физиологии Саратовского государственного медицинского университета, заслуженный деятель науки РФ, д.м.н., профессор В.Ф.Киричук         В методическом пособии для студентов 2 курса лечебного и педиатрического факультета отражен объем теоретических знаний, необходимых для усвоения в процессе обучения на кафедре нормальной физиологии.                                        2   © Волгоградский Государственный Медицинский Университет, 2005.                                 ОТ АВТОРОВ        Новой редакцией Программы по нормальной физиологии для студентов  высших медицинских и фармацевтических учебных заведений (Москва,  1996), а также Дополнением к программе по нормальной физиологии для  студентов педиатрических институтов и педиатрических факультетов  медицинских   институтов   (Москва,       1990)   предусмотрено   дальнейшее  совершенствование процесса обучения. Для выполнения этой задачи  необходимо    повышение    качества       подготовки   врачей-лечебников.   В  соответствии с указанными документами было подготовлено настоящее  методическое пособие.       Настоящее пособие является результатом работы сотрудников кафедры  нормальной физиологии им. П.К.Анохина Волгоградского государственного  медицинского университета и представляет собой опыт развернутого и  систематического   изложения    физиологии        дыхания    с    изложением                                       3   клинических аспектов, которые обязательно нужно учитывать в практике  врачей.       Успешное изучение особенностей функций организма человека  возможно только после усвоения материала соответствующих глав основного  учебника по физиологии человека. При этом авторы настоящего пособия  старались избежать дублирования и опирались на необходимость знаний  механизмов и компенсации возможных нарушений функции дыхательной  системы.       Хотим поблагодарить всех сотрудников кафедры за оказанную помощь  и поддержку.       Авторы пособия надеются, что результат их труда поможет студентам  лечебного и педиатрического факультетов овладеть знаниями по физиологии  дыхания и с благодарностью примут критические замечания в адрес пособия,  а также конструктивные предложения по улучшению его структуры и  содержания.                                 Содержание   Лекция № 1   Физиология дыхания  1.1 Основные этапы процесса дыхания 1.2 Дыхательный акт и вентиляция легких  1.3 Биомеханика дыхательного акта  1.4 Вентиляция легких  1.5 Соотношение вентиляции и перфузии легких    Лекция № 2                                      4    Газообмен в легких и перенос газов кровью  2.1 Газообмен в легких и перенос газов кровью. Основная закономерность легочного газообмена  2.2 Обмен газов между альвеолярным воздухом и кровью  2.3 Транспорт кислорода кровью  2.4 Транспорт кровью углекислого газа  2.5 Обмен газов между кровью и тканями    Лекция № 3   Нарушения функций дыхания и механизмы их компенсации  3.1 Механизмы развития и компенсации альвеолярной гиповентиляции  3.2 Роль сурфактанта в компенсации нарушений функции внешнего дыхания  3.3 Нарушения газообмена в легких  3.4 Нарушения перфузии легких и механизмы их компенсации  3.5 Влияние дыхания на легочное кровообращение     Лекция № 4   Регуляция дыхания 4.1 Регуляция внешнего дыхания - физиологический процесс управления легочной вентиляцией 4.2 Дыхательный центр, его структура и организация. Дыхательные нейроны с различным характером ритмической активности 4.3 Пневмотаксический центр варолиева моста  4.4 Роль механорецепторов легких в регуляции дыхания  4.5 Рефлекторная саморегуляция дыхания  4.6 Ирритантные рецепторы                                     5   4.7"Юкстакапиллярные" рецепторы легких  4.8 Рефлексы с проприорецепторов дыхательных мышц  4.9 Роль хеморецепторов в регуляции дыхания  4.10 Хемочувствительные рецепторы, расположенные непосредственно в структурах продолговатого мозга ("центральные хеморецепторы") и в сосудистых рефлексогенных зонах ("периферические хеморецепторы")  4.11 Взаимодействие гуморальных стимулов дыхания  4.12 Взаимосвязь регуляции внешнего дыхания и других функции организма  4.13 Защитная функция дыхательных путей     Лекция №5    Нарушения регуляции дыхания и механизмы их компенсации  5.1 Причины и механизмы нарушения регуляции дыхания  5.2 Состояние гипоксической гипоксии (горная и высотная болезнь и др.)  5.3 Нарушения эффекторных звеньев регуляции дыхания  5.4 Механизм развития альвеолярной гиповентиляции  5.5 Диспноэ и патологические типы дыхания  5.6 Обструктивный тип дыхания  5.7 Рестриктивные поражения легких  5.8 Искусственная вентиляция легких  5.9 Компенсаторные реакции при гипоксии, гиперкапнии и гипероксии.                                           6                                   Лекция № 1                               Физиология дыхания   Вопросы:      1.1 Основные этапы процесса дыхания.     1.2 Дыхательный акт и вентиляция легких.      1.3 Биомеханика дыхательного акта.      1.4 Вентиляция легких.      1.5 Соотношение вентиляции и перфузии легких.                      1.1 Основные этапы процесса дыхания        Процесс, при котором окисление органических веществ ведет к  выделению химической энергии, называют дыханием. Если для него  требуется кислород, то дыхание называют аэробным, а если же реакции идут  в отсутствии кислорода — анаэробным дыханием.        Последовательность реакций, посредством которых клетки организма  человека используют энергию связей органических молекул, называется  внутренним, тканевым или клеточным дыханием.       Под дыханием высших животных и человека понимают совокупность  процессов, обеспечивающих поступление во внутреннюю среду организма  кислорода, использование его для окисления органических веществ и  удаление из организма углекислого газа.       Функцию дыхания у человека реализуют:  1) внешнее, или легочное, дыхание, осуществляющее газообмен между  наружной и внутренней средой организма (между воздухом и кровью);                                     7   2) кровообращение, обеспечивающее транспорт газов к тканям и от них;  3) кровь как специфическая газотранспортная среда;  4) внутреннее, или тканевое, дыхание, осуществляющее непосредственный  процесс клеточного окисления;  5) средства нейрогуморальной регуляции дыхания.       Результатом   деятельности системы внешнего        дыхания является  обогащение крови кислородом и освобождение от избытка углекислоты.       Изменение газового состава крови в легких обеспечивают три  процесса:       1) непрерывная вентиляция альвеол для поддержания нормального  газового состава альвеолярного воздуха;       2) диффузия газов через альвеолярно-капиллярную мембрану в объеме,  достаточном для достижения равновесия давления кислорода и углекислого  газа в альвеолярном воздухе и крови;       3) непрерывный кровоток в капиллярах легких в соответствии с  объемом их вентиляции.                  1.2 Дыхательный акт и вентиляция легких       Количество воздуха, находящееся в легких после максимального вдоха  составляет общую емкость легких, величина которой у взрослого человека  составляет 4200-6000 мл. Она состоит из жизненной емкости легких,  представляющей собой то количество воздуха (3300-4800 мл), которое  выходит из легких при максимально глубоком выдохе после максимально  глубокого вдоха, и остаточного воздуха (1100-1200 мл), который еще остается  в легких после максимального выдоха.                                         8        Жизненная емкость составляет три легочных объема:       дыхательный объем, представляющий собой объем (400- 500 мл)  воздуха, вдыхаемый и выдыхаемый при каждом дыхательном цикле;       резервный объем вдоха (дополнительный воздух), т.е. тот объем (1900-  3300 мл) воздуха, который можно вдохнуть при максимальном вдохе после  обычного вдоха;       резервный объем выдоха (резервный воздух), т.е. объем (700-1000 мл),  который можно выдохнуть при максимальном выдохе после обычного  выдоха. При спокойном дыхании после выдоха в легких остается резервный  объем выдоха и остаточный объем. Сумму этих объемов называют  функциональной остаточной емкостью, а также нормальной емкостью  легких, емкостью покоя, емкостью равновесия, буферным воздухом.                      1.3 Биомеханика дыхательного акта       Аппарат вентиляции состоит из двух анатомо-физиологических  образований:          • грудной клетки с дыхательными мышцами и          • легких с дыхательными путями.       Грудной отдел позвоночника и грудины с укрепленными на них 12  парами ребер и дыхательными мышцами наряду с диафрагмой образуют  жесткий, подвижный, обладающий эластичностью футляр для легких,  который изменяет свой объем вследствие сокращений дыхательных мышц.       Дыхательные мышцы относятся к поперечнополосатой скелетной                                     9   мускулатуре, но они отличаются от других скелетных мышц.        Во-первых, это единственные скелетные мышцы, от которых зависит  жизнь; поэтому на протяжении всей жизни они должны ритмически  сокращаться.        Во-вторых,   они   находятся    как    под   произвольным,   так   и  непроизвольным контролем.        Различают основные и вспомогательные дыхательные мышцы.        К     основным   относят   диафрагму     и   межреберные     мышцы,  обеспечивающие вентиляцию легких в физиологических условиях.        К вспомогательным - мышцы шеи, часть мышц верхнего плечевого  пояса, мышцы брюшного пресса, принимающие участие в форсированном  вдохе или выдохе в обстоятельствах, затрудняющих вентиляцию легких.        Легкие, находящиеся внутри грудной клетки, отделены от ее стенок  плевральной полостью (щелью) и находятся в растянутом состоянии. За счет  того, что легкие обладают эластичностью (эластичность — сочетание  растяжимости и упругости), давление в межплевральном щелевидном  пространстве (так называемое плевральное давление) меньше альвеолярного  на величину, обусловленную эластической тягой легких.        Плевральное давление часто называют отрицательным, принимая  уровень атмосферного давления за нуль. После спокойного выдоха оно ниже  атмосферного примерно на 6 мм рт. ст., а во время спокойного вдоха — на 9  мм рт.ст.        Отрицательное давление в плевральной полости стремится сжать                                        10        

Страницы ← предыдущая следующая → 1 2 3 4 5 6 7 8 9 10 image Минпросвещения России ФГАУ ГНИИ ИТТ «Информика» Рособрнадзор Федеральная университетская компьютерная сеть РФ Федеральный портал «Российское образование» Единое окно доступа к образовательным ресурсам Главная Поиск

Различные способы поиска

Поиск по базе данных: image Научные статьи Видеоматериалы

Поиск Яндексом по сайту

Репозиторий OAI—PMH

Репозиторий Российская Офтальмология Онлайн по протоколу OAI-PMH

Конференции

Офтальмологические конференции и симпозиумы

Видео

Видео докладов

Поздравляем—> Онлайн трансляции—>Всероссийский консилиум. Клинические разборы пациентов с глаукомой из реальной практики. 23 июня 2021 г. 16:00 — 17:30

Для интересующихся подробно рассказываем про общий анализ крови (ОАК), расшифровываем основные показатели, приводим нормы для детей и взрослых, а также рассказываем о возможных причинах отклонений. Цены на анализы крови и на все другие виды анализов смотрите в разделе «Услуги» на нашем сайте.

Общий анализ крови – это самый распространенный анализ, который широко используется для обследования при большинстве заболеваний. Изменения, происходящие в крови чаще всего отражают процессы, происходящие в целом организме.

Самым лучшим биоматериалом для этого анализа является кровь, взятая из вены (венозная кровь). Именно при заборе крови из вены удается добиться минимальной травматизации и активации клеток, примеси тканевой жидкости и имеется возможность повторить и/или расширить анализ.

В некоторых случаях, однако, возникает необходимость использования капиллярной крови (например, у новорожденных, у пациентов с труднодоступными венами и т.д.).

Интерпретация результата анализа крови должна проводиться врачом с учетом состояния пациента, истории его заболевания и клинической картины.

Необходимо знать, что величины нормальных показателей разнятся у детей разного возраста и взрослых, у мужчин и женщин и могут различаться в различных лабораториях.

Расшифровка основных показателей общего анализа крови

Концентрация гемоглобина (HGB).  Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—150 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови.

Гемоглобин – это основной компонент эритроцитов, он является переносчиком кислорода от легких к тканям. Уровень гемоглобина может изменяться у клинически здоровых лиц, так как некоторые факторы, например, высота проживания над уровнем моря, курение, беременность, обезвоживание, или наоборот, повышенное потребление жидкости, физическая нагрузка могут влиять на величину этого показателя. Снижение концентрации гемоглобина может указывать на наличие анемии, что требует обязательного дообследования для выяснения причины заболевания и подбора правильного лечения.

Эритроциты (RBC). Среднее содержание гемоглобина для мужчин — 13,3—18 г% (или 4,0—5,0·1012 единиц), для женщин — 11,7—15,8 г% (или 3,9—4,7·1012 единиц). Единица измерения уровня гемоглобина представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.

Эритроциты – это красные клетки крови в форме двояковыгнутого диска, именно они содержат гемоглобин. Основной функцией эритроцитов является обеспечение газообмена, транспортировка кислорода к тканям и органам. Также эти клетки учавствуют в поддержание кислотно-основного состояния, влияют на реологические свойства (вязкость) крови, учавствуют в иммунных процессах путем взаимодействия с антителами, циркулирующими иммунными комплексами.

Количество эритроцитов в крови — один из наиболее важных показателей системы крови. Снижение количества эритроцитов в крови – один из основных диагностических критериев анемии. Также снижение уровня этих клеток может наблюдаться при беременности, кровопотере, гипергидратации и всегда требует дообследования для исключения жизнеугрожающих заболеваний. Повышение количества эритроцитов – эритроцитозы – могут наблюдаться при полицитемии, заболеваниях легких, при пороках сердца, повышенной физической нагрузке, при пребывании на больших высотах, синдроме Кушинга, феохромоцитоме, гиперальдостеронизме, дегидратации, алкоголизме, курении.

При наличии изменений показателя эритроцитов необходима консультация терапевта, который проведет осмотр и назначит необходимые дополнительные обследования для выявления точной причины и правильное лечение.

Гематокрит (HCT) — это соотношение объёмов форменных элементов и плазмы крови. В норме гематокрит мужчины равен 0,40—0,48, а женщины — 0,36—0,46. У новорождённых гематокрит примерно на 20 % выше, а у маленьких детей — примерно на 10 % ниже, чем у взрослого.

Повышение уровня:

  • Эритроцитозы
  • Полицитемия
  • Ожоговая болезнь
  • Шок
  • Дегидратация
  • Лекарственные препараты (андрогены, оральные контрацептивы)

Снижение уровня:

  • Анемии
  • Беременность (II триместр)
  • Гипергидратация
  • Лекарственные препараты (амфотерицин В, ибупрофен, пенициллин)

Лейкоциты (WBC) (белые кровяные клетки). В крови взрослого человека лейкоцитов содержится в 1000 раз меньше, чем эритроцитов, и в среднем их количество составляет 4—9·109/л. У новорождённых детей, особенно в первые дни жизни, количество лейкоцитов может сильно варьировать от 9 до 30·109/л. У детей в возрасте 1—3 года количество лейкоцитов в крови колеблется в пределах 6,0—17,0·109/л, а в 6—10 лет в пределах 6,0-11,0·109/л.

Содержание лейкоцитов в крови не является постоянным, а динамически изменяется в зависимости от времени суток и функционального состояния организма. Так, количество лейкоцитов обычно несколько повышается к вечеру, после приёма пищи, а также после физического и эмоционального напряжения.играют главную роль в специфической и неспецифической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов (например, воспаления).

Все виды лейкоцитов способны к активному движению и могут переходить через стенку капилляров и проникать в межклеточное пространство, где они поглощают и переваривают чужеродные частицы.

Если чужеродных тел проникло в организм очень много, то фагоциты, поглощая их, сильно увеличиваются в размерах и в конце концов разрушаются. При этом освобождаются вещества, вызывающие местную воспалительную реакцию, которая сопровождается отеком, повышением температуры и покраснением пораженного участка.

Вещества, вызывающие реакцию воспаления, привлекают новые лейкоциты к месту внедрения чужеродных тел. Уничтожая чужеродные тела и поврежденные клетки, лейкоциты гибнут в больших количествах. Гной, который образуется в тканях при воспалении, — это скопление погибших лейкоцитов.

Лейкоцитарная формула – это процентное соотношение различных видов лейкоцитов. Лейкоциты различаются по происхождению, функциям и внешнему виду.

Нейтрофилы (NEUT). Зрелые сегментоядерные нейтрофилы в норме являются основным видом лейкоцитов, циркулирующих в крови человека, составляя от 47% до 72% общего количества лейкоцитов крови. Ещё 1—5 % в норме составляют юные, функционально незрелые нейтрофилы, имеющие палочкообразное сплошное ядро и не имеющие характерной для зрелых нейтрофилов сегментации ядра — так называемые палочкоядерные нейтрофилы.

Основная функция нейтрофилов — защита организма от микроорганизмов . Эти клетки играют очень важную роль в защите организма от бактериальных и грибковых инфекций, и сравнительно меньшую — в защите от вирусных инфекций. В противоопухолевой или антигельминтной защите нейтрофилы практически не играют роли.

Увеличение нейтрофилов (нейтрофилёз) может быть признаком острого и (реже) хронического инфекционного заболевания, онкологического процесса, воспалительного процесса, аутоиммунных заболеваний, отмечается в послеоперационный период, при повышенных физических нагрузках.

Снижение уровня нейтрофилов (нейтропения) может свидетельствовать о наличии онкологического заболевания крови, метазстазах в костную ткань, лучевой болезни, апластической анемии, бывает при приеме некоторых лекарственных препаратов, при анафилактическом шоке, голодании, аутоиммунных заболеваниях.

Моноциты (MONO). В норме моноциты составляют от 3% до 11% общего количества лейкоцитов крови. Это самые крупные клетки периферической крови, они являются макрофагами, то есть могут поглощать относительно крупные частицы и клетки или большое количество мелких частиц и как правило не погибают после фагоцитирования (возможна гибель моноцитов при наличии у фагоцитированного материала каких-либо цитотоксических для моноцита свойств). Этим они отличаются от микрофагов— нейтрофилов и эозинофилов, способных поглощать лишь относительно небольшие частицы и как правило погибающих после фагоцитирования. По сравнению с нейтрофилами моноциты более активны в отношении вирусов, чем бактерий, и не разрушаются во время реакции с чужеродным антигеном, поэтому в очагах воспаления, вызванного вирусами, гной не формируется. Также моноциты накапливаются в очагах хронического воспаления.

Увеличение количества моноцитов может быть при инфекциях вирусной, паразитарной, бактериальной природы и вызванной простейшими, при аутоиммунных и онкологических заболеваниях, лейкозах.

Базофилы (BASO) составляют в норме: 0 — 1 %. Это очень крупные гранулоциты: они крупнее и нейтрофилов, и эозинофилов. Гранулы базофилов содержат большое количество гистамина, серотонина, лейкотриенов, простагландинов и других медиаторов аллергии и воспаления. Эти клетки участвуют в реакциях гиперчувствительности замедленного типа, воспалительных и аллергических реакциях, регуляции проницаемости сосудистой стенки.

Повышение уровня базофилов может наблюдаться при аллергических заболеваниях, ревматизме, лейкозе, миелофиброзе, полицитемии.

Эозинофилы (EO) составляют от 1 до 5 % лейкоцитов. Эти клетки, как и нейтрофилы, способны к фагоцитозу, причём являются микрофагами, то есть способны, в отличие от макрофагов, поглощать лишь относительно мелкие чужеродные частицы или клетки. Однако, эозинофил не является «классическим» фагоцитом, его главная роль не в фагоцитозе. Главнейшее их свойство — экспрессия Fc-рецепторов, специфичных для Ig E. Физиологически это проявляется в мощных цитотоксических, а не фагоцитарных, свойствах эозинофилов, и их активном участии в противопаразитарном иммунитете. Однако, повышенная продукция антител класса E может привести к аллергической реакции немедленного типа (анафилактический шок), что является главным механизмом всех аллергий такого типа.

Повышение уровня, эозинофилия, может быть признаком аллергических заболеваний: бронхиальная астма, поллиноз, аллергический дерматит, аллергический ринит, лекарственная аллергия.

Также повышение уроня этих клеток может свидетельствовать об нвазии паразитов: аскаридоз, токсокароз, трихинеллез, эхинококкоз, шистосомоз, филяриоз, стронгилоидоз, описторхоз, анкилостомоз, лямблиоз.

Эозинофилия может быть при различных онкологических процессах, иммунодефиците, болезнях соединительной ткани (узелковый периартериит, ревматоидный артрит).

Уменьшение количества эозинофилов, эозинопения, может быть на первых этапах воспалительного процесса, при тяжелых гнойных инфекциях, шоке, сепсисе, эклампсии в родах, при интоксикация химическими соединениями и тяжелыми металлами.

Изменения в лекоцитарной формуле должны быть интерпретированы врачом, так как только специалист (терапевт, педиатр, хирург, аллерголог, травматолог, отоларинголог, гинеколог, невролог и др.) может правильно оценить показатели анализа, назначить при необходимости дополнительные обследования (биохимический анализ крови, исследование на инфекции, аллергию, УЗИ) для установки правильного диагноза и назначения лечения.

Тромбоциты (PLT) – это небольшие (2—4 мкм) безъядерные плоские бесцветные форменные элементы крови. Физиологическая плазменная концентрация тромбоцитов — 180—360.109 тромбоцитов на литр. Основной функцией этих элементов является формирование тромбоцитного агрегата, первичной пробки, закрывающей место повреждения сосуда и предоставления своей поверхности для ускорения ключевых реакций плазменного свёртывания. Таким образом, тромбоциты обеспечивают нормальную проницаемость и резистентность стенок микрососудов.

Уменьшение количества тромбоцитов в крови может приводить к кровотечениям. Увеличение же их количества ведет к формированию сгустков крови (тромбоз), которые могут перекрывать кровеносные сосуды и приводить к таким патологическим состояниям, как инсульт, инфаркт миокарда, легочная эмболия или закупоривание кровеносных сосудов в других органах тела.

Неполноценность или болезнь тромбоцитов называется тромбоцитопатия, которая может быть либо уменьшением количества тромбоцитов (тромбоцитопения), либо нарушением функциональной активности тромбоцитов (тромбастения), либо увеличением количества тромбоцитов (тромбоцитоз). Существуют болезни, уменьшающие число тромбоцитов, такие как гепарин-индуцированная тромбоцитопения или тромботическая пурпура, которые обычно вызывают тромбозы вместо кровотечений.

Изменение количества тромбоцитов требует дополнительного исследования свертывающей системы крови (коагулограммы) по назначению лечащего врача.

СОЭ или скорость оседания эритроцитов — неспецифический лабораторный показатель крови, отражающий соотношение фракций белков плазмы. Изменение СОЭ может служить косвенным признаком текущего воспалительного или иного патологического процесса. Также этот показатель известен под названием «Реакция оседания эритроцитов», РОЭ. В норме величина СОЭ у женщин находится в пределах 2—15 мм/час, а у мужчин — 1—10 мм/час.

Чаще всего увеличение СОЭ связано с острой и хронической инфекцией, иммунопатологическими заболеваниями, инфарктами внутренних органов.

Хотя воспаление и является наиболее частой причиной ускорения оседания эритроцитов, увеличение СОЭ также может обусловливаться и другими, в том числе и не всегда патологическими, состояниями. СОЭ также может увеличиваться при злокачественных новообразованиях, при значительном уменьшении числа эритроцитов, в период беременности, при приёме некоторых лекарственных препаратов. Резкое повышение СОЭ (более 60 мм/час) обычно сопровождает такие состояния как септический процесс, аутоиммунные заболевания, злокачественные опухоли, сопровождающиеся распадом тканей, лейкозы. Уменьшение скорости оседания эритроцитов возможно при гиперпротеинемии, при изменении формы эритроцитов, эритроцитозах, лейкоцитозе, ДВС-синдроме, гепатитах.

Несмотря на свою неспецифичность определение СОЭ всё ещё является одним из наиболее популярных лабораторных тестов для установления факта и интенсивности воспалительного процесса.

Изменение показателя требует консультации специалиста, правильной интерпретации в соответствии с клинической картиной состояния пациента, другими изменениями в анализе крови. Чаще всего врач проводит дополнительные обследования (УЗИ, консультации специалистов) для выявления причины и возможного заболевания.

Импакт фактор — 0,651*

*Импакт фактор за 2018 г. по данным РИНЦ

Журнал входит в Перечень рецензируемых научных изданий ВАК.

Ключевые слова ингаляции COVID-19 острый респираторный дистресс-синдром новая коронавирусная инфекция гипоксемия оксигенотерапия кислородотерапия кислород насыщение крови кислородом сатурация кислородные маски Похожие статьи в журнале РМЖ

Читайте в новом номере

Контент доступен под лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная. Читать статью в PDF

Только для зарегистрированных пользователей

зарегистрироваться

Поделитесь статьей в социальных сетях

Порекомендуйте статью вашим коллегам Предыдущая статья Следующая статья Наши партнеры imageСреди наиболее точных методов, позволяющих определить, насколько хорошо организм обеспечен кислородом, особое место занимает исследование газов крови и пульсоксиметрия.

Базовая задача

  1. PaCO2 — 34-45 mm Hg;
  2. PaO2 — 75-100 mm Hg;
  3. SaO2 — 94-100%;
  4. pH of  7.35-7.45;
  5. HCO3 — 22-26 mEq/liter.

Метод пульсоксиметрии и его информативность

Распознать дыхательную недостаточность и оценить общее состояние дыхательной системы можно наиболее точным методом, которым является исследование газов крови. Как только у человека начинает проявляться дыхательная недостаточность, сразу происходит процесс развития гипоксии (снижение уровня кислорода) и гиперкапния — увеличение количества углекислого газа в составе.

Представленный способ исследования используют для возможности распознавания рестриктивных и обструктивных заболеваний легких в хронической форме. Сюда относят такие болезни, как саркоидоз, бронхиальная астма, туберкулез, профессиональные болезни легких. Процедура исследования происходит только на территории больницы.

Чтобы провести исследование, от пациента не требуется особая подготовка. Если человек употребляет антикоагулянты, противовоспалительные препараты и аспирин, нужно предупредить об этом доктора. Что же касается опасностей этой процедуры, то сюда можно отнести возможность кровотечения после проведенной пункции.

Особенности пульсоксиметрии

Пульсоксиметрия представляет собой метод, с помощью которого можно определить насыщенность кислородом гемоглобина крови. Для этого используется специальный прибор, который называется пульсоксиметр. В зависимости от количества кислорода по изменению цвета крови он позволяет определить необходимые параметры. Удобство этого способа заключается в том, что нет необходимости в заборе венозной крови.

Проведение исследования и его информативность

При проведении процедуры на палец пациента накладывают специальный датчик, в котором основным источником есть свет. Проходя через фалангу и капилляры, происходит процесс регистрации изменения цвета крови в зависимости от того, насколько она насыщена кислородом. На экране устройства фиксируются данные в виде кривых насыщенности. Чтобы получить максимально точный результат, необходимо обеспечить полную неподвижность пальца. Нормальный показатель должен составлять 95-98%. Для распознавания дыхательной недостаточности и прочих проблем с дыхательной системой метод сатурации крови является информативным. При недостаточном количестве показатель снижается ниже 95%. Часто этот способ применяется анестезиологами при проведении хирургических вмешательств. Особая подготовка к процедуре не нужна. Метод не приводит к осложнениям и безопасен для человеческого организма.

Пульсоксиметрия: принцип действия

Пульсоксиметрия – предельно доступный метод мониторинга пациента. Особо важно это при ограниченном финансировании медицинского учреждения. Позволяет отслеживать сразу несколько параметров состояния пациента. Изначально применение максимально точных пульсоксиметров требовалось в отделениях интенсивной терапии, далее повсеместно. Но правильное применение пульсоксиметрии требует специальных навыков. При неправильном применении в отделении общей терапии может возникнуть угроза для жизни и здоровья пациента. Рассмотрим принцип работы пульсоксиметра, особенности современного метода, возможные ограничения. А также, какие альтернативы такому методу существуют.

Принцип работы

Пульсоксиметр – высокоточный прибор, который измеряет степень насыщения артериального гемоглобина кислородом. В основе технологии 2 принципа: поглощение гемоглобином света и пульсация светового сигнала при прохождении через ткани, что происходит из-за изменения артериального русла. Этот компонент может отделяться от не пульсирующего при помощи специального микропроцессора. При правильном применении оксиметрия становится максимально полезным методом мониторинга состояния кардиореспираторной системы. В результате на мониторе отображаются 2 показателя:

  1. сатурация гемоглобина кислородом артериальной крови;
  2. частота пульса (измеряется за 5 — 20 секунд).

На правильность работы прибора влияют несколько факторов. К ним относятся внешний свет, частота и ритмичность пульса, дрожание рук, патологический гемоглобин. На достоверность могут повлиять также вазоконстрикция, патологический гемоглобин, особенности работы сердца.

Пульсоксиметр показывает только уровень вентиляции крови, но не уровень вентиляции. При низкой квалификации медицинского работника это часто создает ложную картину при ингаляции кислородом. В такой ситуации есть риск пропустить начальные симптомы гипоксии, которая возникает при обструкции дыхательных путей.

Что измеряет пульсоксиметр?

Пульсоксиметр состоит из нескольких элементов:

  1. датчик для сбора показателей (прикрепляется на палец, мочку уха или крыло носа);
  2. микропроцессор для обработки результатов;
  3. дисплей для обработки результатов.
  1. уровень содержания кислорода в крови;
  2. количество растворенного кислорода;
  3. дыхательный объем;
  4. частота дыхания;
  5. величина сердечного выброса;
  6. артериальное давление.

Систолическое давление определяется по появлению волны на плетизмографии, в процессе сдувания манжеты.

Принципы современной пульсоксиметрии

В основе принципа современной пульсоксиметрии лежит отношение между парциальным давлением кислорода и сатурацией. Этот показатель отражается  в кривой диссоциации гемоглобина. При различных состояниях она может перемещаться вправо либо влево. Например, это может происходить при гемотрансфузии.

Принцип работы пульсоксиметра:

Кислород транспортируется кровотоком главным образом в связанном с гемоглобином виде. Одна молекула гемоглобина может перенести 4 молекулы кислорода и в этом случае она будет насыщена на 100%. Средний процент насыщения популяции молекул гемоглобина в определенном объеме крови и является кислородной сатурацией крови.

В датчике находятся два светодиода, один из которых излучает видимый свет красного спектра (660 нм), другой – в инфракрасном спектре (940 нм). Свет проходит через ткани к фотодетектору, при этом часть излучения поглощается кровью и мягкими тканями в зависимости от концентрации в них гемоглобина. Количество поглощенного света каждой из длин волн зависит от степени оксигенации гемоглобина в тканях.

  1. Микропроцессор способен выделить из спектра поглощения пульсовой компонент крови, т.е. отделить компонент артериальной крови от постоянного компонента венозной или капиллярной крови. Микропроцессоры последнего поколения способны уменьшить влияние рассеивания света на работу пульсоксиметра.

Многократное разделение сигнала во времени  выполняется с помощью циклической работы светодиодов: включается красный, затем инфракрасный, затем оба отключаются, и так много раз в секунду. Таким образом устраняются случайные фоновые помехи.

Новой возможностью микропроцессоров стало  квадратичное многократное разделение. Красный и инфракрасный сигналы разделяются по фазам, а затем вновь комбинируются. При таком варианте могут быть устранены помехи от движения или электромагнитного излучения, поскольку они не могут возникать в одну и ту же фазу двух сигналов светодиодов.

Как и частота пульса, сатурация вычисляется в среднем за 5-20 секунд. Первый показатель рассчитывается по числу циклов светодиодов и уверенным пульсирующим сигналам за определенный промежуток времени.По пропорции поглощенного света каждой из частот микропроцессор вычисляет их коэффициент. В памяти пульсоксиметра имеется серия значений насыщения кислородом, полученные в экспериментах на добровольцах с гипоксической газовой смесью. Микропроцессор сравнивает полученный коэффициент поглощения двух длин волн света с хранящимися в памяти значениями. Неэтично снижать насыщение кислородом у добровольцев ниже 70% при клинических исследованиях. Из-за этого значение сатурации ниже 70%, полученное по пульсоксиметру, не является надежным.Отраженная пульсоксиметрия использует именно такой тип света. Может применяться проксимально, например, на предплечье или передней брюшной стенке. Принцип работы такой же, как у трансмиссионного пульсоксиметра. Существенный недостаток – это сложность закрепления на теле.

Оцените статью
Рейтинг автора
4,8
Материал подготовила
Татьяна Лапшаева
Нефролог, врач высшей категории, стаж более 20 лет
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий