ЛДГ в биохимическом анализе крови: норма и причины повышения

Наименование исследования Цена
1 Общий белок 1 р.д. 90 р.
2 Альбумин 1 р.д. 90 р.
3 Глюкоза 1 р.д. 90 р.
4 Фруктозамин 1 р.д. 90 р.
5 α-Амилаза 1 р.д. 90 р.
6 Липаза 1 р.д. 300 р.
7 Билирубин общий 1 р.д. 90 р.
8 Билирубин прямой 1 р.д. 90 р.
9 Аланинаминотрансфераза (АлАт) 1 р.д. 90 р.
10 Аспартатаминотрансфераза (АсАт) 1 р.д. 90 р.
11 Щелочная фосфатаза (ЩФ) 1 р.д. 90 р.
12 Холинэстераза 1 р.д. 90 р.
13 Лактатдегидрогеназа (ЛДГ) 1 р.д. 90 р.
14 γ-глутамилтрансфераза (ГГТ) 1 р.д. 90 р.
15 Креатинкиназа (К-киназа) 1 р.д. 90 р.
16 Мочевина (Азот мочевины) 1 р.д. 90 р.
17 Креатинин 1 р.д. 90 р.
18 Мочевая кислота 1 р.д. 90 р.
19 Триглицериды 1 р.д. 90 р.
20 Холестерин 1 р.д. 90 р.
21 С-реактивный белок (СРБ) 1 р.д. 90 р.
22 Кальций (Са) 1 р.д. 90 р.
23 Фосфор (Р) 1 р.д. 90 р.
24 Железо (Fe) 1 р.д. 90 р.
25 Магний (Mg) 1 р.д. 90 р.
26 Хлориды (Cl) 1 р.д. 90 р.
27 Аммиак (NH+4)image  1 р.д. 350 р.
28 Желчные кислотыimage 1 р.д. 300 р.

<![endif]–>

Normal false false false RU X-NONE X-NONE <![endif]–> <![endif]–> <![endif]–>Подходя к вопросу корреляции показателей между собой, исследователь или врач должен в первую очередь иметь хорошие представления о двух дисциплинах: физиология и патологическая физиология. Это необходимо, как для понимания патологии в целом, так и биохимических показателей, которые выбирают для исследования.

Все биохимические показатели следует анализировать в совокупности. Лишних показателей не бывает, исследуемый показатель либо подтверждает, либо опровергает предположение, или наводит на возможную патологию. Важно понимать, что одной биохимии крови недостаточно для поставноки диагноза. Довольно часто нужны дополнительные методы исследования, такие как УЗИ, рентген, бактериологические исследования и т.д. Анализируя полученный результат, надо в первую очередь распределить показатели, которые прямо указывают на патологию в органе (например, значительное повышение аланинаминотрасферазы – гепатит), и на показатели вспомогательные необходимые для конкретизации патологии (повышение холестерина – хронический, снижение – острый гепатит).

Как уже было сказано, все показатели взаимосвязаны, поэтому, чтобы уметь “прочитать” анализ, надо для себя решить, с анализа деятельности какого органа надо начать анализ результатов (печени или почек). Наиболее оптимально начинать анализировать результаты с функции почек, так как показателей, указывающих на функцию почек меньше, чем при анализе печени и связанных с изменениями трансферазами. Для стандартного исследования мы рекомендуем определять следующие 10 показателей: глюкоза, мочевина, креатинин, общий белок, альбумин, билирубины, α-амилаза, аспартатаминотрансфераза (АСТ), аланинаминотрансфераза (АЛТ) и щелочная фосфатаза. В качестве дополнительных показателей с целью подтверждения предполагаемой патологии или дифференциальной диагностики определяют  холестерин, триглицериды, ЛДГ, ГГТ, кальций, магний, железо, фосфор.

Оценка биохимических параметров крови при COVID-19

13 Мая 2020  Согласно «Временным методическим рекомендациям. ПРОФИЛАКТИКА, ДИАГНОСТИКА И ЛЕЧЕНИЕ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ (COVID-19) Версия 6 (28.04.2020)» пациентам с подозрением на COVID-19 необходимо проводить биохимический анализ крови. В рекомендуемый перечень входят следующие исследования: мочевина, креатинин, электролиты, печеночные ферменты, билирубин, глюкоза, альбумин, лактат, лактатдегидрогеназа тропонин, ферритин. Биохимический анализ крови не дает какой-либо специфической информации, но обнаруживаемые отклонения могут указывать на наличие органной дисфункции, декомпенсацию сопутствующих заболеваний и развитие осложнений, имеют определенное прогностическое значение, оказывают влияние на выбор лекарственных средств и/или режим их дозирования.    Так же пациентам с подозрением на COVID-19 и с установленным диагнозом проводят исследования уровня СРБ (С-реактивного белка) в сыворотке крови. Уровень СРБ коррелирует с тяжестью течения, распространенностью воспалительной инфильтрации и прогнозом при пневмонии.    Среди биохимических исследований большое значение играют такие параметры как АЛТ и АСТ. Например, противопоказаниями для назначения ингибиторов рецепторов ИЛ-6 является повышение активности АСТ или АЛТ (более чем в 5 раз превышает верхнюю границу нормы).    В соответствии с Методическими рекомендациями «Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19» уровень СРБ выше 10 мг/л является одним из факторов, указывающих на среднетяжелое течение инфекции у пациентов с НКИ.    Компания ОМБ может вам предложить следующие наборы для проведения биохимических исследований:    Наборы реагентов in vitro диагностики для определения биохимических показателей в крови, моче и других биологических жидкостях – ФСЗ 2011/10262 (производство ELITIech Clinical Systems SAS): АЛТ АСТ   Альбумин Билирубин общий Билирубин прямой Глюкоза Креатинин Лактат Лактатдегидрогеназа Мочевина Щелочная фосфатаза С-реактивный белок    Реагенты диагностические (in-vitro) для клинической биохимии – ФСЗ 2009/05322 от 23.11.2009 (производство Analyticon Biotechnologies AG): АЛТ АСТ Альбумин Билирубин общий Билирубин прямой Глюкоза Креатинин Лактат Лактатдегидрогеназа Мочевина Щелочная фосфатаза    Наборы реагентов ELITech Clinical Systems и Analyticon Biotechnologies AG предназначены для использования на любых открытых биохимических анализаторах, как полуавтоматических, так и автоматических, а также для ручных методик. Все реагенты изготавливаются по методам рекомендованным Международной Федерацией Клинической Химии (IFCC) и Немецким Обществом Клинической Химии (DGKC), имеют высокие сроки стабильности в открытом виде, широкие диапазоны линейности. Большинство наборов поставляются в различных вариантах фасовок, что позволяет оптимально использовать их в лабораториях с различным потоком исследований.     omb.ru Перейти к: навигация, поиск

ЛАКТАТДЕГИДРОГЕНАЗА (L-лактат: НАД — оксидоредуктаза; КФ 1.1.1.27 и 28; ЛДГ) – фермент углеводного обмена, катализирующий одну из важнейших реакций анаэробного гликолиза — взаимопревращение пировиноградной и молочной к-т.

Активность этого фермента в сыворотке крови и относительное содержание его изоферментов являются важным биохимическим диагностическим тестом при ряде заболеваний.

Лактатдегидрогеназа обнаруживается во всех тканях животных и человека, особенно в сердечной и скелетных мышцах, эритроцитах, печени и почках. Локализована Лактатдегидрогеназа в цитоплазме.

В физиологических условиях равновесие реакции, катализируемой Лактатдегидрогеназой, смещено в сторону образования молочной к-ты (лактата). Коферментом Лактатдегидрогеназы является НАД (см. Никотинамидадениндинуклеотид).

Восстановление пирувата под действием Л. завершает внутренний окислительно-восстановительный цикл гликолиза (см.). Когда клетки мышц высших организмов в условиях большой мышечной нагрузки вынуждены функционировать в анаэробных условиях, из мышц в кровь поступает большое количество лактата. В печени этот лактат вновь превращается в глюкозу (см.). Утомление мышц частично обусловлено развитием ацидоза в мышцах, т. к. при гликолизе из каждой нейтральной молекулы глюкозы образуются две молекулы молочной к-ты (см. Лактат-ацидоз).

С точки зрения кинетики, реакции, катализируемые Л., представляют собой двухсубстратные реакции с упорядоченным связыванием субстратов. Первым с Л. связывается кофермент, продукты реакции диссоциируют последовательно. В реакции восстановления пирувата стадией, лимитирующей скорость реакции, является изомеризация тройного комплекса: Л.— НАД-H — пируват. В реакции окисления лактата такой лимитирующей стадией является диссоциация пирувата или НАД-H2. Помимо пирувата, Л. катализирует восстановление гомологичных ему альфа-кетокислот — альфа-кетомасляной, альфа-кетовалериановой и альфа-кетокапроновой. Л. неактивна при использовании в качестве субстратов щавелево-уксусной (оксалата) и альфа-кетоглутаровой к-т, а также бета- и δ-кетокислот, кетонов и ацетальдегида. Л. обладает строгой стереоспецифичностью: она катализирует окисление только L-молочной к-ты; при восстановлении же оптически неактивного пирувата также образуется только L-молочная к-та (см. Изомерия).

Активность Л. обычно определяют спектрофотометрическим методом, основанным на измерении поглощения НАД-Н2 при 340 нм.

Аминокислотный состав и первичная структура Л. различаются в зависимости от источника выделения фермента и его изоферментного состава (см. Изоферменты). Мол. вес (масса) Л. равен приблизительно 140 000. Молекула Л. представляет собой тетрамер, состоящий из одного или двух типов субъединиц. В каждой из них имеются остатки цистеина и гистидина, существенные для проявления ферментативной активности, блокирование которых приводит к инактивации фермента. Активный центр в молекуле Л., где происходит связывание кофермента и субстрата, представляет собой гидрофобную область протяженностью 1,4 нм, содержащую остатки аргинина, дикарбоновых к-т и гистидина.

Лактат и пируват в высоких концентрациях вызывают ингибирование Л. вследствие образования непродуктивных комплексов с ферментом.

Адениновые нуклеотиды, оксалат и оксамат обратимо и конкурентно ингибируют Л. Дезамино-НАД эффективно участвует в реакции, катализируемой Л.

Л. существует по меньшей мере в пяти различных молекулярных формах, т. е. фермент представлен пятью изоферментами, которые обозначают в порядке расположения их на электрофореграмме по направлению к аноду при щелочных значениях pH: ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4 и ЛДГ5. В сердечной мышце и почках содержится гл. обр. ЛДГ1. В скелетных мышцах и в печени содержится в основном ЛДГ5. Катализируя одну и ту же реакцию, изоферменты Л. четко различаются по величинам констант Михаэлиса — Ментен (Км) для субстратов. Высказывалось предположение, что отдельные изоферменты предпочтительно катализируют прямую или обратную лактатдегидрогеназную реакцию.

Полипептидные цепи в молекулах изоферментов Л. могут быть двух различных типов, обозначаемых обычно М или Н. Установлено, что пять изоферментов Л. имеют следующий субъединичный состав: ЛДГ1—Н4, ЛДГ2-Н3М, ЛДГ3-Н2М2, ЛДГ4—H1M3 и ЛДГ5—М4. Изоферменты Л. типа М4 и НМ3 содержатся преимущественно в тех тканях, в которых энергия образуется за счет гликолиза, напр, в белых скелетных мышцах или в эмбриональных тканях. Изоферменты же типа Н3М и Н4 встречаются гл. обр. в тканях, для которых характерен аэробный или дыхательный метаболизм. Изоферменты Л. отличаются друг от друга способностью к инактивации высокими концентрациями пирувата. Более чувствителен по отношению к пирувату изофермент ЛДГ5, что объясняется самой высокой скоростью образования им тройного непродуктивного комплекса Л.— НАД-H — пируват и его стабильностью. В организме обычно синтезируются субъединицы Л. обоих типов, но в неодинаковом количестве для разных тканей, что обусловливает сборку тех или иных изоферментов Л., специфичных именно для той или иной ткани. Пептидные цепи двух типов субъединиц Л. кодируются двумя разными генами. Влияние мутаций на изофермеиты Л. зависит от того, происходят ли они в локусе, кодирующем биосинтез цепи М, или в локусе, определяющем биосинтез цепи Н. Так, мутация в локусе М. не влияет на свойства ЛДГ1, поскольку этот изофермент не содержит субъединиц М. Вместе с тем такая мутация в разной степени изменяет свойства ЛДГ2, ЛДГ3, ЛДГ4 и ЛДГ5, содержащих соответственное количество субъединиц М. Аналогично мутация в локусе В не должна затрагивать ЛДГ5, в отличие от остальных четырех изоферментов Л.

У гетерозигот (см. Менделя законы) синтезируется очень сложный набор изоферментов Л. Так, у индивидуума, гетерозиготного по локусу М., но гомозиготного по нормальному аллелю локуса Н, могут синтезироваться 15 изоферментов Л., распределение которых будет иным, нежели у индивидуума, гетерозиготного по локусу Н, но гомозиготного по локусу М. Соотношение нормальных и вариантных изоферментов определяется соотношением нормальных и вариантных полипептидов, доступных для образования тетрамеров.

У людей найдено значительное число вариантов Л., различающихся по своему изоферментному спектру (качественно и количественно). Все они сравнительно редки и были обнаружены путем обычного электрофоретического исследования. Ни один из известных вариантов, по-видимому, не связан с какой-либо определенной клинически проявляющейся аномалией. В каждом случае наблюдается сложная, но совершенно определенная картина электрофоретического разделения.

Кроме локусов, кодирующих М- и Н-субъединицы Л., существует, по-видимому, третий локус, определяющий еще одну субъединицу. Наличие этой субъединицы приводит к появлению особого типа тетрамерного изофермента (соответствующую ему полосу на электрофореграмме называют Х-полосой), характерного для сперматозоидов человека и животных.

Клиническое значение определения активности лактатдегидрогеназы

Уже через несколько часов после начала острого инфаркта миокарда в сыворотке крови отмечают значительное повышение активности Л. Через 36—48 час. эта активность достигает своего максимума (нередко она в 10—15 раз превышает нормальную). Оптимальный период для определения активности Л. в сыворотке крови составляет 2—4 суток после начала инфаркта, т. к. в этот временной отрезок ценность этого биохим, теста наиболее велика. Так, напр., его диагностическая точность, по данным И. В. Мартынова, при трансмуральном инфаркте миокарда в этот отрезок времени равна 97 ± 1,7%.

Обычно активность Л. в сыворотке крови при инфаркте возвращается к норме на 10—12-й день после начала заболевания. Активность Л. в сыворотке крови при инфаркте миокарда остается повышенной дольше других ферментов (напр., аминотрансфераз).

Ценность определения активности Л. в сыворотке крови особенно велика в неясных случаях инфаркта миокарда (при нетипичной клин, и электрокардиографической картинах, в частности при длительных ангинозных приступах, сопровождающихся преходящей деформацией сегмента S T или зубца T без появления патол, зубца Q), а также для дифференциальной диагностики между инфарктом миокарда и расслаивающей аневризмой аорты, острым перикардитом и тромбозом легочной артерии. При всех этих заболеваниях повышение активности Л. в сыворотке крови не столь резкое, как при инфаркте миокарда.

Однако величина активности Л. не позволяет с уверенностью судить о размерах поражения сердечной мышцы и тем более прогнозировать исход заболевания.

У больных стенокардией повышения активности Л. в сыворотке крови не наблюдается. Это позволяет применять ЛДГ-тест как надежный критерий отсутствия поражения сердечной мышцы в пределах 2—3 суток после сердечного приступа.

Активность Л. в сыворотке крови повышается при паренхиматозном гепатите в первые дни желтушного периода. При легкой и среднетяжелой форме заболевания активность фермента довольно быстро возвращается к норме. При механической желтухе активность Л. в сыворотке крови остается в норме, лишь на поздних стадиях болезни она повышается вследствие вторичных повреждений паренхимы печени. При карциномах печени и метастазах рака в печень активность Л. в сыворотке крови также может увеличиваться; при этом концентрация пирувата в сыворотке крови повышается в 2—3 раза (норма 0,5—1,0 мг%). Однако отрицательный результат ЛДГ-теста в этом случае отнюдь не свидетельствует об отсутствии злокачественного поражения печени.

В стадии ремиссии хрон, гепатита активность Л. в сыворотке крови остается в пределах нормы или слегка повышается, при обострении процесса возрастает. В этом случае ЛДГ-тест может быть использован в качестве вспомогательного вместе с другими ферментными пробами.

Активность Л. в сыворотке крови возрастает также при прогрессирующей мышечной дистрофии, хрон, лимфогранулематозе, лейкозах, пернициозной анемии, острых и хрон, нефритах, при опухолях в мочевыводящих путях и других заболеваниях.

Более важное значение в диагностике по сравнению с определением общей активности сывороточной Л. имеет определение изоферментного состава Л. Обычно в сыворотке крови здоровых людей обнаруживаются все 5 фракций Л., активность которых распределяется следующим образом: ЛДГ2>ЛДГ1>ЛДГ3>ЛДГ4>ЛДГ5. При остром инфаркте миокарда изменяется соотношение между активностями ЛДГ1 и ЛДГ2 так, что активность ЛДГ1 становится равной активности ЛДГ2 или выше ее. Этот показатель имеет большое значение в поздней диагностике инфаркта миокарда. Кроме того в силу специфичности этого теста он может быть использован для дифференциальной диагностики.

При паренхиматозных повреждениях ткани печени (инфекционный гепатит), а также при некоторых заболеваниях мышц (прогрессирующая мышечная дистрофия) обнаруживают значительное повышение относительного содержания ЛДГ5, что также находит применение в энзимодиагностике этих заболеваний.

См. также Дегидрогеназы.

Библиография:

Ньюсхолм Э. и Старт К. Регуляция метаболизма, пер. с англ., с. 111, 291, М., 1977;

Северин С. Е. Гликолиз, в кн.: Хим. основы процессов жизнедеят., под ред. В. Н. Ореховича, с. 156, М., 1962; Харрис Г. Основы биохимической генетики человека, пер. с англ., с. 53, М., 1973; Holbro ok J. J. а. о. Lactate dehydrogenase, в кн.: Enzymes, ed. by P. D. Boyer, v. И, p. 191, N. Y.— L., 1975, bibliogr.

Г. Я. Видершайн.

Категория: Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание

Рекомендуемые статьи

Биохимия крови (биохимический анализ крови) – лабораторный метод диагностики, который позволяет определить биохимический состав крови, что отображает работу внутренних органов (почек, печени, поджелудочной железы).

Показатели биохимического анализа крови

  • Общий белок 65-85 г/л
  • Альбумин 35-55 г/л
  • Белковые фракции
  • -альбумин 53-66 %
  • -α1-глобулины 2,0-5,5 %
  • -α2-глобулины 6,0-12,0 %
  • -β-глобулины 8,0-15,0 %
  • -γ-глобулины 11,0-21,0 %
  • АЛТ (аланинаминотрансфераза) 0-40 МЕ/л
  • АСТ (аспартатаминотрансфераза) 0-38 МЕ/л
  • γ-Глутамилтранспептидаза 11-50 МЕ/л
  • Фолиевая кислота 1,7-17,2 нг/мл
  • Витамин B12 (цианкобаламин) 180-914 пг/мл
  • Ревматоидный фактор, суммарные антитела 0-40 МЕ/мл
  • Креатинкиназа-МВ 0,0-24,0 Ед/л
  • Иммуноглобулины класса A (IgA) 70,0-400,0
  • Иммуноглобулины класса G (IgG) 700-1600 мг/дл
  • Иммуноглобулины класса M (IgM) 40-230 мг/дл
  • Билирубин общий 5,0-21,0 мкмоль/л
  • Билирубин прямой 0,0-3,4 мкмоль/л
  • Мочевина  1,7-7,5 ммоль/л
  • Креатинин 55-96 мкмоль/л
  • Глюкоза 4,1-5,9 ммоль/л
  • Кальций общий 2,20-2,65 ммоль/л
  • Общая железосвязывающая способность сыворотки   44,7-76,1 мкмоль/л
  • Железо сыворотки 10,7-32,2 мкмоль/л
  • Латентная железосвязывающая способность сыворотки 27,8-63,6 мкмоль/л
  • Ферритин 10-150 мкг/л
  • Холестерин общий до 5,2 ммоль/л
  • Триглицериды 0,7-1,9 ммоль/л
  • Холестерин ЛПВП 0,7-2,2 ммоль/л
  • Холестерин ЛПНП до 3,3 ммоль/л
  • Β-липопротеиды 350-600 мг%
  • Мочевая кислота 200-416 мкмоль/л
  • Тимоловая проба до 4 усл.ед.
  • Антистрептолизин-O (АСЛО) до 200 МЕ/мл
  • Антитела к нуклеотидам (анти-ДНП, LE-тест) отрицательно
  • Ревматоидный фактор (РФ) до 8 МЕ/мл
  • C-реактивный фактор (СРБ) до 6 мг/л
  • Фосфор неорганический (Р) 0,8-1,6 ммоль/л
  • Магний (Mg) 0,7-1,1 ммоль/л
  • Кальций общий (Ca)2,25-2,75 ммоль/л
  • Калий (K) 3,4-5,3 ммоль/л
  • Натрий (Na) 130-153 ммоль/л
  • Креатинфосфокиназа (КФК, КК) 25-200 Ед/л
  • Лактатдегидрогеназа (ЛДГ) 225-450 Ед/л
  • Фосфатаза щелочная 100-290 Ед/л
  • Липаза до 190 Ед/л
  • α-Амилаза до 220 Ед/л

Белки плазмы крови разнородны по структуре, потому выделяют общий белок и его фракции. Повышение уровня общего белка может происходить: за счет гиперпродукции гамма-глобулинов при миеломной болезни, за счет уменьшения объема жидкости при обезвоживании, диарее или рвоте. Низкий уровень белка (гипопротеинемия) может наблюдаться при голодании, нефрозах, опухолях, ожогах, печеночной недостаточности, кровопотере и воспалении.

Мочевина является продуктом белкового метаболизма. Мочевина выводится поками. Высокий уровень мочевины обнаруживается при нарушении почечной фильтрации, при увеличенном белковом распаде. Небольшие цифры мочевины могут быть при белковом голодании, беременности и нарушенном всасывании в кишечнике.

Креатинин – продукт белкового обмена. Уровень креатинина находится в зависимости от белкового распада. Уровень креатинин  повышается при повышенном белковом синтезе (гигантизм, акромегалия).

Мочевая кислота образуется в результате нуклеинового обмена. Высокий уровень мочевой кислоты может возникать при почечной недостаточности, миеломной болезни, гестозе. Обмен мочевой кислоты нарушается при подагре. Гипоурикемия (низкий уровень) наблюдается при синдроме Фанкони и болезни Вильсона-Коновалова.

Увеличение активности щелочной фосфатазы сопровождает рахит любой этиологии, болезнь Педжета, костные изменения, связанные с гиперпаратиреозом, остеогенную саркому, метастазы рака в кости, миеломную болезнь, лимфогранулематоз с поражением костей, наблюдается при холестазе, при отравлениях алкоголем на фоне хронического алкоголизма. У детей щелочная фосфатаза повышена до периода полового созревания.  

C-реактивный белок – белок плазмы крови, относящийся к группе белков острой фазы, концентрация которых повышается при воспалении. Обладает способностью связывать стрептококковый полисахарид, за что и получил свое название. С-реактивный белок используется в клинической диагностике наряду с СОЭ как индикатор воспаления. Так же как и СОЭ, уровень С-реактивного белка повышается при воспалительных процессах в организме. Но, в отличие от СОЭ, С-реактивный белок является более чувствительным показателем: раньше появляется в крови и раньше исчезает. Повышение значений происходит при опухолях, менингите, при инфаркте миокарда, туберкулеза, ревматических заболеваниях.

Уровень амилазы повышается при воспалении поджелудочной железы и при воспалении околоушной железы, при перитоните, сахарном диабете, почечной недостаточности. Низкие цифры показателя могут отмечаться при муковисцидозе или недостаточности поджелудочной железы, при гепатите, при токсикозе беременных.

Холестерин – основной участник жирового обмена. Присутствует в крови в виде двух фракций: ЛПНП и ЛПВП. Липопротеины низкой плотности (ЛПНП) – основной переносчик холестерина к клеткам. ЛПНП оседают в атеросклеротических бляшках. Уровень может повышаться при беременности, пониженной функции щитовидной железы, атеросклерозе сосудов и печеночной недостаточности. Липопротеины высокой плотности (ЛПВП) – транспорт излишков холестерина. Уровень понижается при декомпенсации сахарного диабета, атеросклерозе сосудов и хронической почечной недостаточности.  

Оцените статью
Рейтинг автора
4,8
Материал подготовила
Татьяна Лапшаева
Нефролог, врач высшей категории, стаж более 20 лет
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий